Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(11): 1342-1350, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37231267

RESUMO

Acinetobacter baumannii is a nosocomial Gram-negative pathogen that often displays multidrug resistance. Discovering new antibiotics against A. baumannii has proven challenging through conventional screening approaches. Fortunately, machine learning methods allow for the rapid exploration of chemical space, increasing the probability of discovering new antibacterial molecules. Here we screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. We trained a neural network with this growth inhibition dataset and performed in silico predictions for structurally new molecules with activity against A. baumannii. Through this approach, we discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii. Further investigations revealed that abaucin perturbs lipoprotein trafficking through a mechanism involving LolE. Moreover, abaucin could control an A. baumannii infection in a mouse wound model. This work highlights the utility of machine learning in antibiotic discovery and describes a promising lead with targeted activity against a challenging Gram-negative pathogen.


Assuntos
Acinetobacter baumannii , Aprendizado Profundo , Animais , Camundongos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
2.
Nat Chem Biol ; 16(10): 1062-1070, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719555

RESUMO

A major objective of synthetic glycobiology is to re-engineer existing cellular glycosylation pathways from the top down or construct non-natural ones from the bottom up for new and useful purposes. Here, we have developed a set of orthogonal pathways for eukaryotic O-linked protein glycosylation in Escherichia coli that installed the cancer-associated mucin-type glycans Tn, T, sialyl-Tn and sialyl-T onto serine residues in acceptor motifs derived from different human O-glycoproteins. These same glycoengineered bacteria were used to supply crude cell extracts enriched with glycosylation machinery that permitted cell-free construction of O-glycoproteins in a one-pot reaction. In addition, O-glycosylation-competent bacteria were able to generate an antigenically authentic Tn-MUC1 glycoform that exhibited reactivity with antibody 5E5, which specifically recognizes cancer-associated glycoforms of MUC1. We anticipate that the orthogonal glycoprotein biosynthesis pathways developed here will provide facile access to structurally diverse O-glycoforms for a range of important scientific and therapeutic applications.


Assuntos
Escherichia coli/metabolismo , Glicoproteínas/biossíntese , Polissacarídeos/metabolismo , Engenharia de Proteínas , Antígenos Glicosídicos Associados a Tumores/biossíntese , Sistema Livre de Células , Citometria de Fluxo/métodos , Glicosilação , Humanos , Polissacarídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...